E-Books / Video Training →A Gentle Introduction to Machine Learning Using SciKit-Learn
Published by: mitsumi on 30-01-2019, 17:16 | 0
A Gentle Introduction to Machine Learning Using SciKit-Learn
MP4 | Video: AVC 1280x720 | Audio: AAC 44KHz 2ch | Duration: 1 Hours | Lec: 17 | 124 MB
Genre: eLearning | Language: English
MP4 | Video: AVC 1280x720 | Audio: AAC 44KHz 2ch | Duration: 1 Hours | Lec: 17 | 124 MB
Genre: eLearning | Language: English
How to use Scikit-Learn to buid a supervised learning model
Welcome to A Gentle Introduction to Machine Learning Using SciKit-Learn
In this course, we going to build an end-to-end Python machine learning project. You'll learn how to use Scikit-Learn to build and tune a supervised learning model.
Scikit-learn was initially developed by David Cournapeau as a Google summer of code project in 2007 and since then has become the de facto library used for machine learning in Python.
Python is one of the most popular languages for machine learning and in the course we'll gently introduce you to SciKit-Learn, a library designed for working with machine learning projects.
Scikit-Learn, also known as sklearn, is Python's premier general-purpose machine learning library. Scikit-Learn's versatility makes it the best starting place for most ML problems.
Scikit-Learn is great for beginners it offers a high-level interface for many tasks. This allows you to better practice the entire machine learning workflow and understand the big picture.
We will also gently introduce you to the vernacular of machine learning. For example, a target variable is simply that thing we are trying to predict. A feature is often no more than a column in at table.
You'll get hands on experience with the process of machine learning. The process involves importing data, cleaning the data, training and testing, pre-processing and feature engineering.
We are going to define new terms but we will skip the math and theory for now.
Thanks for your interest in A Gentle Introduction to Machine Learning Using SciKit-Learn.
Download link:
uploadgig_com:
http://uploadgig.com/file/download/56420eF6ACf91545/gpypy.A.Gentle.Introduction.to.Machine.Learning.Using.SciKitLearn.part1.rar
http://uploadgig.com/file/download/dBa78330aC73e92f/gpypy.A.Gentle.Introduction.to.Machine.Learning.Using.SciKitLearn.part2.rar
rapidgator_net:
https://rapidgator.net/file/92826a3a4408e8704f9a8ac7bfa2e0e2/gpypy.A.Gentle.Introduction.to.Machine.Learning.Using.SciKitLearn.part1.rar.html
https://rapidgator.net/file/125d9b9484e17552bb3c94d789f40c0d/gpypy.A.Gentle.Introduction.to.Machine.Learning.Using.SciKitLearn.part2.rar.html
nitroflare_com:
http://nitroflare.com/view/B3438FDCC54D16D/gpypy.A.Gentle.Introduction.to.Machine.Learning.Using.SciKitLearn.part1.rar
http://nitroflare.com/view/BCB6F1C83D24EB6/gpypy.A.Gentle.Introduction.to.Machine.Learning.Using.SciKitLearn.part2.rar
http://uploadgig.com/file/download/56420eF6ACf91545/gpypy.A.Gentle.Introduction.to.Machine.Learning.Using.SciKitLearn.part1.rar
http://uploadgig.com/file/download/dBa78330aC73e92f/gpypy.A.Gentle.Introduction.to.Machine.Learning.Using.SciKitLearn.part2.rar
rapidgator_net:
https://rapidgator.net/file/92826a3a4408e8704f9a8ac7bfa2e0e2/gpypy.A.Gentle.Introduction.to.Machine.Learning.Using.SciKitLearn.part1.rar.html
https://rapidgator.net/file/125d9b9484e17552bb3c94d789f40c0d/gpypy.A.Gentle.Introduction.to.Machine.Learning.Using.SciKitLearn.part2.rar.html
nitroflare_com:
http://nitroflare.com/view/B3438FDCC54D16D/gpypy.A.Gentle.Introduction.to.Machine.Learning.Using.SciKitLearn.part1.rar
http://nitroflare.com/view/BCB6F1C83D24EB6/gpypy.A.Gentle.Introduction.to.Machine.Learning.Using.SciKitLearn.part2.rar
Links are Interchangeable - No Password - Single Extraction
Related News
-
{related-news}
Comments (0)
Information
Users of Guests are not allowed to comment this publication.